Pro-Aperiodic Monoids via Saturated Models
نویسندگان
چکیده
We apply Stone duality and model theory to study the structure theory of free pro-aperiodic monoids. Stone duality implies that elements of the free pro-aperiodic monoid may be viewed as elementary equivalence classes of pseudofinite words. Model theory provides us with saturated words in each such class, i.e., words in which all possible factorizations are realized. We give several applications of this new approach, including a solution to the word problem for ω-terms that avoids using McCammond’s normal forms, as well as new proofs and extensions of other structural results concerning free pro-aperiodic monoids. This technical report is an extended version of a recently submitted conference paper.
منابع مشابه
Variétés et fonctions rationnelles
We say that a rational (resp. a subsequential) function tl from a free monoid into another one is in the variety of monoids V if it may realized by some unambiguous (resp. subsequential) transducer whose monoid of transitions is in V. We characterize these functions when V is the variety of aperiodic monoids, and the variety of groups. In the first case, the period of am ’ (15) divides that of ...
متن کاملDualisability of Finite Semigroups
We describe the inherently non-dualisable finite algebras from some semigroup related classes. The classes for which this problem is solved include the variety of bands, the pseudovariety of aperiodic monoids, commutative monoids, and (assuming a reasonable conjecture in the literature) the varieties of all finite monoids and finite inverse semigroups. The first example of an inherently non-dua...
متن کاملA Profinite Approach to Stable Pairs
We give a short proof, using profinite techniques, that idempotent pointlikes, stable pairs and triples are decidable for the pseudovariety of aperiodic monoids. Stable pairs are also described for the pseudovariety of all finite monoids.
متن کاملOn uniformly continuous functions for some profinite topologies
Given a variety of finite monoids V, a subset of a monoid is a V-subset if its syntactic monoid belongs to V. A function between two monoids is V-preserving if it preservesV-subsets under preimages and it is hereditary V-preserving if it is W-preserving for every subvariety W of V. The aim of this paper is to study hereditary V-preserving functions when V is one of the following varieties of fi...
متن کاملAperiodic Two-way Transducers and FO-Transductions
Deterministic two-way transducers on finite words have been shown by Engelfriet and Hoogeboom to have the same expressive power as MSO-transductions. We introduce a notion of aperiodicity for these transducers and we show that aperiodic transducers correspond exactly to FO-transductions. This lifts to transducers the classical equivalence for languages between FO-definability, recognition by ap...
متن کامل